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Abstract

Semidefinite programs are a class of optimization problems that have been the focus of in-
tense research during the past fifteen years. Semidefinite programs extend linear programs,
and both are defined using deterministic data. However, uncertainty is naturally present in
applications leading to optimization problems. Stochastic linear programs with recourse have
been studied since the fifties as a way to deal with uncertainty in data defining linear pro-
grams. Recently, the authors have defined an analogous extension of semidefinite programs
termed stochastic semidefinite programs with recourse to deal with uncertainty in data defining
semidefinite programs. A prominent alternative for handling uncertainty in data defining linear
programs is chance-constrained linear programming. In this paper we introduce an analogous
extension of semidefinite programs termed chance-constrained semidefinite programs for han-
dling uncertainty in data defining semidefinite programs.

AMS Subject Classifications: 90C15, 90C22, 90C05, 90C51

Keywords: Linear programming, stochastic programming, semidefinite programming, chance-
constraints

1 Introduction

Semidefinite programs [1, 16, 18, 14] are a class of optimization problems that have been stud-
ied extensively during the past fifteen years. Semidefinite programs extend linear programs, and
since both are defined using deterministic data we shall refer to them as deterministic semidefinite
programs (DSDP’s)1 and deterministic linear programs (DLP’s) respectively.

Uncertainty is naturally present in applications leading to optimization problems. (Two-stage)
stochastic linear programs (with recourse) (SLP’s) [6, 17, 7, 3, 8, 11] have been studied since the
fifties as a way to deal with uncertainty in data defining DLP’s. Indeed, the incorporation of
uncertainty present in applications into models is so important that stochastic programming is
currently one of the most active research subfields of optimization.
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1As is customary in mathematical programming and optimization literature, we use the term deterministic semidef-

inite program to mean the generic form of a problem, and the term deterministic semidefinite programming to mean
the field of activities based on that problem. Both will be denoted by the acronym DSDP, while the acronym DSDP’s
will denote the plural of the first usage. Acronyms DLP, SLP, SSDP, CCLP and CCSDP are defined and used in the
same sense.
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In a recent paper [2] (see also [9]), the authors have defined a class of optimization problems
termed (two-stage) stochastic semidefinite programs (with recourse) (SSDP’s) to deal with uncer-
tainty in data defining DSDP’s. SSDP’s are related to DSDP’s in the same way that SLP’s are
related to DLP’s.

Chance-constrained linear programming (CCLP) [4, 5, 10, 11, 12] is a prominent alternative
to SLP for handling uncertainty in data defining DLP’s. In this paper, we introduce a class of
apparently new optimization problems that we refer to as chance-constrained semidefinite programs
(CCSDP’s). CCSDP’s are related to DSDP’s in the same way that CCLP’s are related to DLP’s,
and CCSDP is an alternative to SSDP for handling uncertainty in data defining DSDP’s.

The rest of this paper is structured as follows. In §2, we indicate our notation and some
preliminaries setting the stage for our definition of a CCSDP given in §3. The main reason that
semidefinite programming and stochastic programming are two of the most vibrant research fields
of optimization is their applicability. In order to demonstrate the applicability of SSDP, in [2], the
authors indicated how an SSDP may be formulated for dealing with uncertainty in data defining
the minimum-volume covering ellipsoid problem [16, 13] which is often cited as an example DSDP.
In §4, we show how CCSDP as defined in §3 of this paper provides an alternative way to handle
uncertainty in data defining the minimum-volume covering ellipsoid problem. We conclude the
paper briefly in §5 commenting on how the definitions in this paper and [2] indicate the usefulness
of possible joint activities by researchers in semidefinite programming and stochastic programming.

2 Preliminaries

Our notation on DSDP’s follows that of Todd [14]. Let R
m×n and R

n∨n denote the vector spaces
of real m × n matrices and real symmetric n × n matrices respectively. For U, V ∈ R

n∨n, we write
U � 0 (U ≻ 0) to mean that U is positive semidefinite (positive definite), and U � V or V � U to
mean that U − V � 0. For U, V ∈ R

m×n, we write U • V := trace (UTV ) to denote the Frobenius
inner product between U and V . Given Ui ∈ R

ni×ni for i = 1, 2, . . . , n, we use diag(U1, U2, . . . , Un)
to denote the matrix in R

(
Pn

i=1
ni)×(

Pn
i=1

ni) with U1, U2, . . . , Un on the diagonal and zeros elsewhere.
A DSDP in primal standard form is

minimize C • X

subject to Ai • X = bi, i = 1, 2, . . . ,m
X � 0,

(1)

where Ai ∈ R
n∨n for i = 1, 2, . . . ,m, b ∈ R

m and C ∈ R
n∨n constitute given data, and X ∈ R

n∨n

is the variable. A DSDP in dual standard form is

maximize bTy

subject to
∑m

i=1 yiAi � C
(2)

where Ai ∈ R
n∨n for i = 1, 2, . . . ,m, b ∈ R

m and C ∈ R
n∨n constitute given data, and y ∈ R

m is
the variable.

It is possible to convert a problem in the form of (2) to an equivalent problem in the form of
(1) and vice versa (see [18, 16]). Also, it is appropriate to refer to (1) and (2) as the primal form
and the dual form respectively due to the duality theory that exists between them (see [14, §4]).

A DLP in primal standard form

minimize cTx

subject to Ax = b

x ≥ 0
(3)
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and its dual
maximize bTy

subject to ATy ≤ c

where A ∈ R
m×n, b ∈ R

m and c ∈ R
n constitute given data, x ∈ R

n is the primal variable,
and y ∈ R

m is the dual variable are special cases of (1) and (2) respectively. This follows from
the associations C := diag(c1, c2, . . . , cn), Ai := diag(Ai1, Ai2, . . . , Ain) for i = 1, 2, . . . ,m, and
X := diag(x1, x2, . . . , xn).

Now consider the DLP
maximize bTy

subject to ATy ≤ c

TTy ≤ ξ

(4)

where A ∈ R
m×n1 , T ∈ R

m×n2 , b ∈ R
m, c ∈ R

n1 , and ξ ∈ R
n2 are deterministic data, and y ∈ R

m

is the decision variable. Clearly, (4) is a DLP in dual standard form.
A CCLP based on (4) is defined as follows. Suppose that the vector ξ and the matrix T are

both random depending on an underlying outcome ω in an event space Ω with a known probability
function P . Let the symbol P denote probability. Then it is meaningful to require that the
probability of the constraints TT(ω)y ≤ ξ(ω) being satisfied is at least some prescribed value
p ∈ (0, 1), rather than requiring that they hold for all outcomes ω ∈ Ω. This leads to the problem

maximize bTy

subject to ATy ≤ c

P
(

TT(ω)y ≤ ξ(ω)
)

≥ p

(5)

which is termed a CCLP [4, 5, 10, 11, 12].
Constraints in the form of the last constraint of (5) arise naturally in various applications and

are called chance-constraints (or probabilistic-constraints). Such constraints can be viewed as a
relaxation of the requirement that constraints are enforced for all possible values of uncertain data,
which could be prohibitive or even impossible. In practice, p ∈ (0, 1) may be chosen close to 1.

3 Definition of a CCSDP

We define a CCSDP based on deterministic data Ai ∈ R
n1∨n1 for i = 1, 2, . . . ,m, b ∈ R

m, and
C ∈ R

n1∨n1 ; and random data Wi ∈ R
n2∨n2 for i = 1, 2, . . . ,m, and D ∈ R

n2∨n2 whose realizations
depend on an underlying outcome ω in an event space Ω with a known probability function P .
Given this data, we define a CCSDP as the problem

maximize bTy

subject to

m
∑

i=1

yiAi � C

P
(

m
∑

i=1

yiWi(ω) � D(ω)
)

≥ p

(6)

where y ∈ R
m is the variable, and p ∈ (0, 1) is some prescribed value.

4 An application

In this section we describe an application and its formulation as a CCSDP. Our application is a
stochastic version of the minimum-volume covering ellipsoid problem (see [16, 13]) often cited as
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an example DSDP. In [2] we formulated an alternative stochastic version of the minimum-volume
covering ellipsoid problem as an SSDP.

4.1 Preliminaries

Suppose that we are given ellipsoids Ei ⊂ R
n, i = 1, 2 defined by

Ei := {x ∈ R
n : xTHix + 2gT

i x + vi ≤ 0},

where Hi ∈ R
n∨n, Hi ≻ 0, gi ∈ R

n and vi ∈ R for i = 1, 2. Then E1 contains E2 if and only if there
is a τ ≥ 0 such that matrix inequality

[

H1 g1

gT

1 v1

]

� τ

[

H2 g2

gT

2 v2

]

holds [15]. Now consider the ball B ⊂ R
n represented by

B := {x ∈ R
n : xTx − 2x̄Tx + γ ≤ 0}.

The center of B is x̄ and its radius is
√

x̄Tx̄ − γ. The distance from the origin to the center of the
ball is

√
x̄Tx̄.

The ball B contains the ellipsoids E1 and E2 if and only if there exist τ1 ≥ 0 and τ2 ≥ 0 such
that

[

I −x̄

−x̄T γ

]

� τi

[

Hi gi

gT

i vi

]

, i = 1, 2.

4.2 The Application

We describe the application in generic terms first. Suppose that we are given nf fixed ellipsoids
Ei := {x ∈ R

n : xTHix + 2gT

i x + vi ≤ 0} ⊂ R
n, i = 1, 2, . . . , nf . Here Hi ∈ R

n∨n, Hi ≻ 0, gi ∈ R
n

and vi ∈ R for i = 1, 2, . . . , nf are deterministic data. We are also given nr random ellipsoids
Ẽi(ω) := {x ∈ R

n : xTH̃i(ω)x + 2g̃i(ω)Tx + ṽi(ω) ≤ 0}, i = 1, 2, . . . , nr. Here for i = 1, 2, . . . , nr,
H̃i(ω) ∈ R

n∨n, H̃i(ω) ≻ 0, g̃i(ω) ∈ R
n, ṽi(ω) ∈ R are random data whose realizations depend on an

underlying outcome ω in an event space Ω with a known probability function P .
Suppose that we need to determine a ball subject to two types of constraints: the ball must

contain all nf fixed ellipsoids; and it must contain the nr random ellipsoids with probability at
least p ∈ (0, 1). We assume that the cost of choosing the ball has two components: the cost of the
center is proportional to the Euclidean distance to the center from the origin, and the cost of the
radius is proportional to the square of the radius. The second type of constraint mentioned above
can be viewed as a relaxation of the requirement that the ball contains all the realizations of the
nr random ellipsoids, which could be prohibitive or even impossible. The center and the radius are
to be determined so that the total cost is minimized.

Before proceeding to formulate a model for this generic application, we indicate a more concrete
version of it. Let n := 2. The fixed ellipsoids contain targets that need to be destroyed, and the
random ellipsoids contain targets that also need to be destroyed but are moving. Fighter aircrafts
take off from the origin to destroy both types of targets with a planned disk of coverage having
the following properties: the disk contains all the fixed ellipsoids; and it contains the realizations
of the random ellipsoids with probability at least p ∈ (0, 1). Our model determines the center and
the radius of the disk of coverage so that the total cost is minimized.
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4.3 Formulation of the Model

Our goal is to determine x̄ ∈ R
n and γ ∈ R such that the ball B defined by

B := {x ∈ R
n : xTx − 2x̄Tx + γ ≤ 0}

contains the fixed ellipsoids Ei for i = 1, 2, . . . , nf , and the realizations of the random ellipsoids
Ẽi(ω) for i = 1, 2, . . . , nr with probability at least p ∈ (0, 1). Note that the center of B is x̄ and that
the square of the radius of B is x̄Tx̄ − γ. We introduce the two constraints

[

d1I x̄

x̄T d1

]

� 0 (7)

and
[

I x̄

x̄T d2 + γ

]

� 0. (8)

By Schur Complements (7) is equivalent to d1 − x̄T(d1I)−1x̄ ≥ 0 which in turn is equivalent to
d1 ≥

√
x̄Tx̄. Constraint (8) is similarly equivalent to d2 + γ − x̄TI−1x̄ ≥ 0 and to the constraint

d2 ≥ x̄Tx̄− γ. Thus d1 is an upper bound on the distance between the center of the ball B and the
origin,

√
x̄Tx̄. Similarly, d2 is an upper bound on square of the radius of the ball B, x̄Tx̄ − γ.

Let c̄ ≥ 0 denote the cost per unit of the Euclidean distance between the center of the ball B
and the origin, and α ≥ 0 be the cost per unit of the square of the radius of B.

We define the decision variable x ∈ R
(nf +nr+n+3) as

x :=
[

d1, d2, x̄
T, γ, τT, δT

]

T

,

where except for the auxiliary variables τ ∈ R
nf and δ ∈ R

nr , other variables are as specified above.
We also introduce the unit cost vector c ∈ R

(nf+nr+n+3) as

c :=
[

c̄, α, 0T , 0 , 0T , 0T

]T

.

Then we get the model

minimize cTx

subject to
[

I −x̄

−x̄T γ

]

� τi

[

Hi gi

gT

i vi

]

, i = 1, 2, . . . , nf ,

0 ≤ τ,

0 �
[

d1I x̄

x̄T d1

]

,

0 �
[

I x̄

x̄T d2 + γ

]

,

P

(

[

I −x̄

−x̄T γ

]

� δi

[

H̃i(ω) g̃i(ω)
gT

i (ω) vi(ω)

]

, i = 1, 2, . . . , nr

)

≥ p,

0 ≤ δ.

(9)
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Problem (9) is a CCSDP as defined in §3. We now indicate the assignments that need to be
made in (6) to obtain (9). First let n1 := nf +nr +3(n+1), m := nf +nr +n+3, and n2 := n+1.
Then let y := x and b := −c. We use 0n to denote the zero vector in R

n, and 0̄n to denote the zero
matrix in R

n∨n. Let ei be the i-th elementary vector in R
n, and In be the identify matrix in R

n∨n.
Then for i = 1, 2, . . . , (nf + nr + n + 3), we define matrix Ai ∈ R

(nf+nr+3(n+1))∨(nf +nr+3(n+1)) as
follows:

A1 := diag( 0̄(n+1), 0̄nf
, −I(n+1), 0̄(n+1), 0̄nr );

A2 := diag
(

0̄(n+1), 0̄nf
, 0̄(n+1), −

[

0̄n 0n

0T
n 1

]

, 0̄nr

)

;

for i = 3, 4, . . . , (n + 2)

Ai := diag
(

[

0̄n −e(i−2)

−eT

(i−2) 0

]

, 0̄nf
,

[

0̄n −e(i−2)

−eT

(i−2) 0

]

,

[

0̄n −e(i−2)

−eT

(i−2) 0

]

, 0̄nr

)

;

A(n+3) := diag
(

[

0̄n 0n

0T
n 1

]

, 0̄nf
, 0̄(n+1),

[

0̄n 0n

0T
n −1

]

, 0̄nr

)

;

for i = (n + 4), (n + 5), . . . , (nf + n + 3)

Ai := diag
(

−
[

H(i−n−3) g(i−n−3)

gT

(i−n−3) v(i−n−3)

]

, diag(−e(i−n−3)), 0̄(n+1), 0̄(n+1), 0̄nr

)

;

and for i = (nf + n + 4), (nf + n + 5), . . . , (nf + nr + n + 3)

Ai := diag
(

0̄(n+1), 0̄(nf ), 0̄(n+1), 0̄(n+1), diag(−e(i−nf−n−3))
)

.

Next we define C ∈ R
(nf+nr+3(n+1))∨(nf +nr+3(n+1)) as

C := diag
(

[

−In 0n

0T
n 0

]

, 0̄nf
, 0̄(n+1),

[

In 0n

0T
n 0

]

, 0̄nr

)

.

Then for i = 1, 2, . . . , (nf + nr + n + 3), we define matrix Wi(ω) ∈ R
(n+1)∨(n+1) as follows:

W1(ω) := 0̄(n+1);

W2(ω) := 0̄(n+1);

for i = 3, 4, . . . , (n + 2)

Wi(ω) :=

[

0̄n −e(i−2)

−eT

(i−2) 0

]

;

W(n+3)(ω) :=

[

0̄n 0n

0T
n 1

]

;

for i = (n + 4), (n + 5), . . . , (nf + n + 3)

Wi(ω) = 0̄(n+1);

and for i = (nf + n + 4), (nf + n + 5), . . . , (nf + nr + n + 3)

Wi(ω) := −
[

H̃(i−nf−n−3)(ω) g̃(i−nf−n−3)(ω)

g̃T

(i−nf−n−3)(ω) ṽ(i−nf−n−3)(ω)

]

.
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Finally, we define D(ω) ∈ R
(n+1)∨(n+1) as

D(ω) :=

[

−In 0n

0T
n 0

]

.

With these assignments in (6) we get (9), and so (9) is a CCSDP as defined in §3.

5 Concluding Remarks

In this paper, we have defined an apparently new paradigm for stochastic optimization that we term
chance-constrained semidefinite programming (CCSDP). CCSDP is an alternative to (two-stage)
stochastic semidefinite programming (with recourse) (SSDP) defined in [2] for handling uncertainty
in data defining semidefinite programs. Our developments of CCSDP in this paper, and of SSDP in
[2] are such that they parallel the corresponding developments leading to chance-constrained linear
programs (CCLP’s) and (two-stage) stochastic linear programs (with recourse) (SLP’s) as ways of
handling uncertainty in data defining linear programs. As a consequence, research problems on
applications, algorithms and theory pertinent to CCSDP and SSDP, and possible ways for their
solution essentially suggest themselves. For example, it readily becomes apparent that an SSDP
and a CCSDP can be combined into a single model similar to the way an SLP and a CCLP is
combined in [17].

Semidefinite programming and stochastic programming are two of the most vibrant research
subfields of optimization. This paper and [2] suggest exciting new possibilities for joint work by
researchers in the two fields.
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[9] S. Mehrotra and M. G. Özevin. Stochastic semidefinite programming and decomposition based
interior point methods: theory. Manuscript (dated December 28, 2004), Department of In-
dustrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208
(available also at http://www.optimization-online.org/DB HTML/2005/01/1040.html).
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